Thickness-Dependent Structural and Electronic Properties of HfO2 Thin Films Probed by XRD and XAFS

dc.authorid0000-0001-8827-1590
dc.authorid0000-0002-0810-9938
dc.contributor.authorOzkendir, Osman Murat
dc.contributor.authorCengiz, Erhan
dc.contributor.authorKanmaz, Imran
dc.contributor.authorGunaydin, Selen
dc.contributor.authorApaydin, Gokhan
dc.contributor.authorHarfouche, Messaoud
dc.date.accessioned2026-01-24T12:30:59Z
dc.date.available2026-01-24T12:30:59Z
dc.date.issued2025
dc.departmentAlanya Alaaddin Keykubat Üniversitesi
dc.description.abstractHafnium dioxide (HfO2) thin films have garnered significant attention due to their exceptional dielectric, mechanical, and thermal properties, making them ideal for applications in microelectronics, optoelectronics, and energy storage. However, despite extensive research, a comprehensive understanding of their thickness-dependent structural and electronic properties remains incomplete. In this study, we systematically investigate HfO2 thin films (13-115 nm) synthesized via spin coating and characterized using synchrotron-based x-ray absorption fine structure (XAFS) spectroscopy and x-ray diffraction (XRD). High-resolution XRD confirms the monoclinic P2(1)/c phase with high crystallinity and minimal strain, while XAFS analysis reveals thickness-dependent variations in local atomic coordination and electronic structure. XANES spectra demonstrate a systematic shift in the Hf L-3-edge white line, indicating modifications in unoccupied Hf 5d states due to changes in oxygen coordination. EXAFS fitting further quantifies bond distances and coordination numbers, revealing enhanced structural ordering in thicker films. Density functional theory (DFT) calculations corroborate experimental findings, confirming the bandgap (similar to 4.4 eV) and orbital contributions to valence and conduction bands. Our results provide critical insights into defect states, interfacial effects, and thickness-dependent structural modifications, advancing the optimization of HfO2 for next-generation electronic devices.
dc.identifier.doi10.1007/s11664-025-12205-x
dc.identifier.endpage10519
dc.identifier.issn0361-5235
dc.identifier.issn1543-186X
dc.identifier.issue11
dc.identifier.scopus2-s2.0-105013327596
dc.identifier.scopusqualityQ2
dc.identifier.startpage10511
dc.identifier.urihttps://doi.org/10.1007/s11664-025-12205-x
dc.identifier.urihttps://hdl.handle.net/20.500.12868/5564
dc.identifier.volume54
dc.identifier.wosWOS:001553630900001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofJournal of Electronic Materials
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260121
dc.subjectHfO2
dc.subjectthin films
dc.subjectelectronic structure
dc.subjectXAFS
dc.titleThickness-Dependent Structural and Electronic Properties of HfO2 Thin Films Probed by XRD and XAFS
dc.typeArticle

Dosyalar