Spin orbit torque driven magnetization reversal in CoFeTaB/Pt probed by resonant x-ray reflectivity

dc.authorid0000-0001-8508-4204
dc.authorid0000-0001-5614-2292
dc.authorid0000-0002-9001-0418
dc.authorid0000-0001-7540-1616
dc.authorid0000-0002-8070-6104
dc.authorid0000-0003-2112-8399
dc.contributor.authorBurn, D. M.
dc.contributor.authorFan, R.
dc.contributor.authorInyang, O.
dc.contributor.authorTokac, M.
dc.contributor.authorBouchenoire, L.
dc.contributor.authorHindmarch, A. T.
dc.contributor.authorSteadman, P.
dc.date.accessioned2026-01-24T12:29:00Z
dc.date.available2026-01-24T12:29:00Z
dc.date.issued2022
dc.departmentAlanya Alaaddin Keykubat Üniversitesi
dc.description.abstractResonant soft-x-ray reflectivity and vibrating sample magnetometry have been used to characterize field driven and spin orbit torque driven magnetization reversal in a CoFeTaB/Pt bilayer. Reversal of the magnetization occurs either along the applied field direction or perpendicular to the current flow direction. Magnetometry results show that field driven (current driven) coercivities are reduced by application of a current (field) highlighting the roles played by the two external parameters. In the current switching case, it is demonstrated with soft-x-ray hysteresis loops that only the layers near the interface with Pt switch, possibly highlighting the role of proximity effects of the magnetized Pt. We show how magnetization reversal perpendicular to the beam results in hysteresis behavior in the reflected intensity that is dependent on the magnetization but independent of the helicity of the circular polarization of the incident beam.
dc.description.sponsorshipNigerian government TETFund scheme; Republic of Turkey Ministry of National Education; EPSRC [EP/L000121/1]; HEFCE ODA; Royal Society; EPSRC [EP/L000121/1, EP/S020802/1, EP/S020845/1] Funding Source: UKRI; Engineering and Physical Sciences Research Council [EP/L000121/1] Funding Source: researchfish
dc.description.sponsorshipWe acknowledge support from Nigerian government TETFund scheme (OI), Republic of Turkey Ministry of National Education (MT), EPSRC Grant Ref. No. EP/L000121/1, HEFCE ODA, and the Royal Society (ATH). XMaS is a UK national research facility supported by EPSRC. We thank Diamond Light Source for the provision of I10 beamtime and SQUID-VSM access.
dc.identifier.doi10.1103/PhysRevB.106.094429
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.issue9
dc.identifier.scopus2-s2.0-85139342159
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1103/PhysRevB.106.094429
dc.identifier.urihttps://hdl.handle.net/20.500.12868/5056
dc.identifier.volume106
dc.identifier.wosWOS:000925129200005
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAmer Physical Soc
dc.relation.ispartofPhysical Review B
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260121
dc.subjectCircular-Dichroism
dc.subjectScattering
dc.titleSpin orbit torque driven magnetization reversal in CoFeTaB/Pt probed by resonant x-ray reflectivity
dc.typeArticle

Dosyalar