Riemann zeta matrix function

dc.contributor.authorKargın, Levent
dc.contributor.authorKurt, Veli
dc.date.accessioned2021-02-19T21:16:27Z
dc.date.available2021-02-19T21:16:27Z
dc.date.issued2015
dc.departmentALKÜ
dc.description.abstractIn this study, obtaining the matrix analog of the Euler's reflection formula for the classical gamma function we expand the domain of the gamma matrix function and give a infinite product expansion of sin pi xP. Furthermore we define Riemann zeta matrix function and evaluate some other matrix integrals. We prove a functional equation for Riemann zeta matrix function.
dc.identifier.endpage688en_US
dc.identifier.issn2147-1762
dc.identifier.issue4en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage683en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12868/435
dc.identifier.volume28en_US
dc.identifier.wosWOS:000421194200018
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthor0-belirlenecek
dc.language.isoen
dc.publisherGazi Univ
dc.relation.ispartofGazi University Journal of Science
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectGamma matrix function
dc.subjectRiemann Zeta matrix function
dc.subjectMatrix integrals
dc.titleRiemann zeta matrix function
dc.typeArticle

Dosyalar