Comparative Analysis of Structural and Magnetic Properties in Co/Cu and Co/W Multilayers

[ X ]

Tarih

2024

Yazarlar

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Wien

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Gilbert damping in symmetric Cu/Co/Cu and asymmetric Cu/Co/W multilayers was studied as a function of Co thickness using FMR linewidth measurements. W-capped multilayers showed higher intrinsic damping across all thicknesses, due to strong SOC in W, which enhances spin-pumping, and MDL formation at the Co/W interface, increasing spin-flip scattering. The higher spin-mixing conductance in W-capped multilayers is linked to stronger SOC and enhanced orbital hybridization at the Co/W interface. X-ray diffraction revealed an fcc(111) phase in Co layers up to 4 nm thick, with thicker films showing a mix of fcc(111) and hcp(0001) textures. The Co thin films showed saturation magnetizations near literature values. No dead layer was found in Cu-capped multilayers, however, a 0.3 nm MDL formed in W-capped multilayers due to atomic intermixing at the Co/W interface. FM/NM interfaces are crucial in generating and dissipating pure spin currents, and they significantly impact the damping properties through the influence of seed and capping layers.

Açıklama

Anahtar Kelimeler

Giant Magnetoresistance, Grain-Size, Thickness, Anisotropy

Kaynak

Applied Magnetic Resonance

WoS Q Değeri

Q4

Scopus Q Değeri

Q3

Cilt

55

Sayı

11

Künye