Generalization of Mellin derivative and its applications

dc.contributor.authorKargın, Levent
dc.contributor.authorCorcino, Roberto B.
dc.date.accessioned2021-02-19T21:16:14Z
dc.date.available2021-02-19T21:16:14Z
dc.date.issued2016
dc.departmentALKÜ
dc.descriptionCorcino, Roberto/0000-0003-1681-1804
dc.description.abstractIn this paper we define generalized exponential polynomials by means of the generalization of the Mellin derivative (xD). We give different proofs for some known results and obtain a new recurrence relation and a new operator formula for generalized exponential polynomials. We also define generalized geometric polynomials by means of the generalization of the Mellin derivative (xD) and obtain their basic properties.
dc.identifier.doi10.1080/10652469.2016.1174701
dc.identifier.endpage631en_US
dc.identifier.issn1065-2469
dc.identifier.issn1476-8291
dc.identifier.issue8en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage620en_US
dc.identifier.urihttps://doi.org/10.1080/10652469.2016.1174701
dc.identifier.urihttps://hdl.handle.net/20.500.12868/329
dc.identifier.volume27en_US
dc.identifier.wosWOS:000377034600003
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthor0-belirlenecek
dc.language.isoen
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofIntegral Transforms And Special Functions
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectStirling numbers
dc.subjectBell numbers
dc.subjectexponential numbers and polynomials
dc.subjectgeometricnumbers and polynomials
dc.titleGeneralization of Mellin derivative and its applications
dc.typeArticle

Dosyalar