Generalization of Mellin derivative and its applications
| dc.contributor.author | Kargın, Levent | |
| dc.contributor.author | Corcino, Roberto B. | |
| dc.date.accessioned | 2021-02-19T21:16:14Z | |
| dc.date.available | 2021-02-19T21:16:14Z | |
| dc.date.issued | 2016 | |
| dc.department | ALKÜ | |
| dc.description | Corcino, Roberto/0000-0003-1681-1804 | |
| dc.description.abstract | In this paper we define generalized exponential polynomials by means of the generalization of the Mellin derivative (xD). We give different proofs for some known results and obtain a new recurrence relation and a new operator formula for generalized exponential polynomials. We also define generalized geometric polynomials by means of the generalization of the Mellin derivative (xD) and obtain their basic properties. | |
| dc.identifier.doi | 10.1080/10652469.2016.1174701 | |
| dc.identifier.endpage | 631 | en_US |
| dc.identifier.issn | 1065-2469 | |
| dc.identifier.issn | 1476-8291 | |
| dc.identifier.issue | 8 | en_US |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.startpage | 620 | en_US |
| dc.identifier.uri | https://doi.org/10.1080/10652469.2016.1174701 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12868/329 | |
| dc.identifier.volume | 27 | en_US |
| dc.identifier.wos | WOS:000377034600003 | |
| dc.identifier.wosquality | N/A | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.institutionauthor | 0-belirlenecek | |
| dc.language.iso | en | |
| dc.publisher | Taylor & Francis Ltd | |
| dc.relation.ispartof | Integral Transforms And Special Functions | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Stirling numbers | |
| dc.subject | Bell numbers | |
| dc.subject | exponential numbers and polynomials | |
| dc.subject | geometricnumbers and polynomials | |
| dc.title | Generalization of Mellin derivative and its applications | |
| dc.type | Article |












