Havayolu Taşımacılığında Müşteri Memnuniyetinin Topluluk Öğrenmesi Yöntemleri ile Belirlenmesi

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Havayolu taşımacılığında seyahatinden memnun olmayan müşterilerin tahmin edilmesi firmaların kendilerini yapılandırması ve gelirlerinin yönetilmesi açısından son derece önemlidir. Gerçekleştirilen çalışmada Amerika Birleşik Devletleri’ndeki havayollarından derlenen veriler kullanılarak uçuş seyahatinden nötr ya da memnun olmayan müşterilerin topluluk öğrenmesi yöntemleriyle tahmin edilmesi amaçlanmıştır. Modelleme aşamasında sınıflandırma problemlerinde yüksek tahmin doğruluğu üreten ve güncel makine öğrenmesi yöntemlerinden Rastgele Orman, Gradient Boosting ve XGBoost yöntemleri kullanılmıştır. Elde edilen en iyi doğruluk oranı %96,4 iken en iyi Özgüllük ve Negatif Tahmin Oranı değerleri sırasıyla %97,7 ve %96’dır. Model sonuçlarından elde edilen yüksek Özgüllük, Negatif Tahmin Oranı ve Doğruluk değerleri makine öğrenmesi yöntemlerinin havayolu taşımacılığında müşterilerin havayolu firmasını tekrar kullanıp kullanmayacağı tahmin işlemlerinde kullanılabileceğini göstermektedir.

Açıklama

Anahtar Kelimeler

Havayolu müşteri memnuniyeti, Rastgele Orman, Gradient Boosting, XGBoost, Havayolu taşımacılığı

Kaynak

Alanya Akademik Bakış

WoS Q Değeri

Scopus Q Değeri

Cilt

6

Sayı

3

Künye