Bayesian Estimation of GARCH(1,1) Model Using Tierney-Kadane’s Approximation

dc.contributor.authorArı, Yakup
dc.date.accessioned2026-01-24T12:20:50Z
dc.date.available2026-01-24T12:20:50Z
dc.date.issued2018
dc.departmentAlanya Alaaddin Keykubat Üniversitesi
dc.descriptionInternational Conference on Applied Economics, ICOAE 2018 -- 2018-07-05 through 2018-07-07 -- Warsaw -- 273609
dc.description.abstractThe Generalized Autoregressive Conditionally Heteroscedastic (GARCH) process models the dependency of conditional second moments of financial time series. The maximum likelihood estimation (MLE) procedure is most commonly used for estimating the unknown parameters of a GARCH model. In this study, the parameters of the GARCH models with normal innovations are discussed for estimations using the Bayesian approach in which the parameters of the GARCH model are assumed as random variables having known prior probability density functions. The prior probability density functions of the parameters satisfy the conditions on GARCH parameters such as positivity and stationarity. The Bayesian estimators are not in a closed form. Thus Tierney-Kadane’s approximation that is a numerical integration method to calculate the ratio of two integrals is used to estimate. The Bayesian estimators are derived under squared error loss function. Finally, simulations are performed in order to compare the ML estimates to the Bayesian ones and furthermore, an example is given in order to illustrate the findings. © 2018, Springer Nature Switzerland AG.
dc.identifier.doi10.1007/978-3-030-02194-8_24
dc.identifier.endpage364
dc.identifier.isbn9783031900532
dc.identifier.isbn9789819665259
dc.identifier.isbn9783319338637
dc.identifier.isbn9783031766572
dc.identifier.isbn9783030552763
dc.identifier.isbn9783030305482
dc.identifier.isbn9783031065804
dc.identifier.isbn9783031261206
dc.identifier.isbn9783030506759
dc.identifier.isbn9789811678172
dc.identifier.issn2198-7246
dc.identifier.scopus2-s2.0-85126224283
dc.identifier.scopusqualityQ4
dc.identifier.startpage355
dc.identifier.urihttps://doi.org/10.1007/978-3-030-02194-8_24
dc.identifier.urihttps://hdl.handle.net/20.500.12868/4627
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Science and Business Media B.V.
dc.relation.ispartofSpringer Proceedings in Business and Economics
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260121
dc.subjectBayes
dc.subjectGARCH
dc.subjectMLE
dc.subjectTierney-Kadane
dc.titleBayesian Estimation of GARCH(1,1) Model Using Tierney-Kadane’s Approximation
dc.typeConference Object

Dosyalar