On some properties of m ? -Statistical convergence in a paranormed space

[ X ]

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Alanya Alaaddin Keykubat Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, we introduce the concepts of strongly  ($\Delta ^{m}$,p)-Cesàro summability,  $\Delta ^{m}-statistical Cauchy sequence and  $\Delta ^{m}-statistical convergence in a paronormed space. We give some certain properties of these concepts and some inclusion relations between them.
In this study, we introduce the concepts of strongly ? ? m ? ,p -Cesàro summability, m ? -statistical Cauchy sequence and m ? -statistical convergence in a paronormed space. We give some certain properties of these concepts and some inclusion relations between them. Fast [1] and Steinhaus [2] introduced the concept of statistical convergence for sequences of real numbers. Several authors studied this concept with related topics [3-5]. The asymptotic density of K N ? is defined as, ? ? n 1 (K) lim k n : k K ?? n ? ? ? ? where K be a subset of the set of natural numbers N and denoted by ? ?K?. . indicates the cardinality of the enclosed set. A sequence ?xk ? is called statistically covergent to L provided that ? k ? n 1 lim k n ? L 0 ?? n ? ? ? ? ? ? for each ?? 0 . It is denoted by lim k k st x L ?? ? ? . A sequence ??k ? is called statistically Cauchy sequence provided that there exist a number N N( ) ? ? such that

Açıklama

Anahtar Kelimeler

Statistical convergence, statistical Cauchy, paranormed space, Statistical convergence, statistical Cauchy, paranormed space, difference sequence

Kaynak

ALKÜ Fen Bilimleri Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

1

Sayı

1

Künye