On Optimal Control of the Heat Flux at the Left-Hand Side in a Heat Conductivity System

dc.contributor.authorKoç, Taha
dc.contributor.authorSaraç, Yeşim
dc.contributor.authorAslancı, Seher
dc.date.accessioned2026-01-24T12:01:07Z
dc.date.available2026-01-24T12:01:07Z
dc.date.issued2024
dc.departmentAlanya Alaaddin Keykubat Üniversitesi
dc.description.abstractWe deal with an optimal boundary control problem in a 1-d heat equation with Neumann boundary conditions. We search for a Neumann boundary function which is the minimum element of a quadratic cost functional involving the $H^1$-norm of boundary controls. We prove that the cost functional has a unique minimum element and is Frechet differentiable. We give a necessary condition for the optimal solution and construct a minimizing sequence using the gradient of the cost functional.
dc.identifier.doi10.54974/fcmathsci.1243111
dc.identifier.endpage24
dc.identifier.issn2717-6185
dc.identifier.issue1
dc.identifier.startpage15
dc.identifier.trdizinid1225648
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1225648
dc.identifier.urihttps://doi.org/10.54974/fcmathsci.1243111
dc.identifier.urihttps://hdl.handle.net/20.500.12868/4018
dc.identifier.volume5
dc.indekslendigikaynakTR-Dizin
dc.language.isoen
dc.relation.ispartofFundamentals of contemporary mathematical sciences (Online)
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_TR-Dizin_20260121
dc.subjectOptimal Control Problems
dc.subjectHeat Equation
dc.subjectFrechet Derivative
dc.subjectAdjoint Problem
dc.titleOn Optimal Control of the Heat Flux at the Left-Hand Side in a Heat Conductivity System
dc.typeArticle

Dosyalar