On Optimal Control of the Heat Flux at the Left-Hand Side in a Heat Conductivity System
| dc.contributor.author | Koç, Taha | |
| dc.contributor.author | Saraç, Yeşim | |
| dc.contributor.author | Aslancı, Seher | |
| dc.date.accessioned | 2026-01-24T12:01:07Z | |
| dc.date.available | 2026-01-24T12:01:07Z | |
| dc.date.issued | 2024 | |
| dc.department | Alanya Alaaddin Keykubat Üniversitesi | |
| dc.description.abstract | We deal with an optimal boundary control problem in a 1-d heat equation with Neumann boundary conditions. We search for a Neumann boundary function which is the minimum element of a quadratic cost functional involving the $H^1$-norm of boundary controls. We prove that the cost functional has a unique minimum element and is Frechet differentiable. We give a necessary condition for the optimal solution and construct a minimizing sequence using the gradient of the cost functional. | |
| dc.identifier.doi | 10.54974/fcmathsci.1243111 | |
| dc.identifier.endpage | 24 | |
| dc.identifier.issn | 2717-6185 | |
| dc.identifier.issue | 1 | |
| dc.identifier.startpage | 15 | |
| dc.identifier.trdizinid | 1225648 | |
| dc.identifier.uri | https://search.trdizin.gov.tr/tr/yayin/detay/1225648 | |
| dc.identifier.uri | https://doi.org/10.54974/fcmathsci.1243111 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12868/4018 | |
| dc.identifier.volume | 5 | |
| dc.indekslendigikaynak | TR-Dizin | |
| dc.language.iso | en | |
| dc.relation.ispartof | Fundamentals of contemporary mathematical sciences (Online) | |
| dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.snmz | KA_TR-Dizin_20260121 | |
| dc.subject | Optimal Control Problems | |
| dc.subject | Heat Equation | |
| dc.subject | Frechet Derivative | |
| dc.subject | Adjoint Problem | |
| dc.title | On Optimal Control of the Heat Flux at the Left-Hand Side in a Heat Conductivity System | |
| dc.type | Article |












