Daily comparison energy and exergy analysis and thermal energy storage performance of solar collectors

[ X ]

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Nova Science Publishers, Inc.

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this chapter, energy and exergy analyses of flat plate solar collectors (FPSCs), parabolic trough solar collectors (PTSCs) and evacuated tube solar collectors (ETSCs) were investigated for a day selected in January under daily solar radiation. For three different configurations, the surface area of each collector is considered as 50 m2, 100 m2, and 150 m2 separately. The analyses of the solar thermal system were carried out by using Engineering Equation Solver (EES) software under solar radiation from 8 a.m. to 17 p.m. The water at 9.5°C is upgraded to higher degree by the solar collectors (SCs) and pumped to a storage tank. The energy and exergy efficiencies were found depending on the three different surface areas of each solar collector. The maximum energy efficiencies of FPSCs, ETSCs and PTSCs for the surface area of 50 m2 were found as 49.54%, 66.22% and 68.95%, and the maximum exergy efficiency were found as 5.30%, 9.05% and 7.14%, respectively. The maximum energy efficiencies of FPSCs, ETSCs and PTSCs for the surface area of 100 m2 were found as 38.43%, 55.09% and 68.96%, and the maximum exergy efficiency were found as 5.93%, 10.79% and 12.79%, respectively. The maximum energy efficiencies of FPSCs, ETSCs and PTSCs for the surface area of 150 m2 were found as 31.39%, 46.84% and 68.95%, and the maximum exergy efficiency were found as 5.69%, 10.63% and 17.10%, respectively. It was found that the energy efficiency of FPSCs and ETSCs decreased with the increase in surface area and their low exergy efficiency did not change significantly. However, it was found that the energy efficiency of PTSCs did not change, but the exergy efficiency was increased. Therefore, PTSCs have higher exergetic performance compared to other two solar collectors and can be preferred in high power generation. © 2021 Nova Science Publishers, Inc. All rights reserved.

Açıklama

Anahtar Kelimeler

Kaynak

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

Sayı

Künye