Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Yologlu, Saim" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    The Effect of Cluster Size for Model Performance in High-Dimensional Longitudinal Studies: A Simulation Study
    (2023) Şengül, Merve Türkegün; Tasdelen, Bahar; Yologlu, Saim
    Objective: In order to prevent model estimation er- rors and deviations in high-dimensional longitudinal studies, risk models are established through penalized methods. The aim of this study is to examine the effect of small cluster effects on the gener- alized estimating equations (GEE) and penalized GEE (PGEE) model performances in high-dimensional longitudinal data. Mate- rial and Methods: A simulation study was designed to compare the GEE and PGEE model performances, Type I error rates, and power in two-period longitudinal data structures with different clus- ter sizes (n=20, 30, 50, 100, 200), different numbers of predictors (p=10, 20, 50) and different correlation levels between predictors (r=0.20, 0.50, 0.80). Results: It was observed that the GEE coef- ficient estimates were misleading and inconsistent, the Type I error rates were high, and the power of the test was weak at insuf- ficient cluster sizes and high correlations between predictors. Even when the number of predictors and cluster size were in the balance (p=10, n=100, 200), Type I error rates were obtanied high for GEE. Increasing the cluster size was not enough to re- duce the Type I error rate of GEE. The PGEE produced more successful results than GEE in all conditions. The power of PGEE increased to over 80% in all scenarios. Conclusion: The PGEE yielded more consistent results by controlling the relationships both within the cluster and between the predictors. In high- dimensional longitudinal studies, it was observed that the use of PGEE is more effective than GEE.

| Alanya Alaaddin Keykubat Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Alanya Alaaddin Keykubat Üniversitesi, Alanya, Antalya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim