Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Yüce, Yilmaz Kemal" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Determining Gaze Information from Steady-State Visually-Evoked Potentials
    (2020) Sayılgan, Ebru; Yüce, Yilmaz Kemal; Isler, Yalcin
    Brain-Computer Interface (BCI) is a communication system that enables individuals who lack control and use of their existingmuscular and nervous systems to interact with the outside world because of various reasons. A BCI enables its user to communicatewith some electronic devices by processing signals generated during brain activities. This study attempts to detect and collect gazedata within Electroencephalogram (EEG) signals through classification. To this purpose, three datasets comprised of EEG signalsrecorded by researchers from the Autonomous University were adopted. The EEG signals in these datasets were collected in a settingwhere subjects’ gaze into five boxes shown on a computer screen was recognized through Steady-State Visually Evoked Potentialbased BCI. The classification was performed using algorithms of Naive Bayes, Extreme Learning Machine, and Support VectorMachines. Three feature sets; Autoregressive, Hjorth, and Power Spectral Density, were extracted from EEG signals. As a result,using Autoregressive features, classifiers performed between 45.67% and 78.34%, whereas for Hjorth their classification performancewas within 43.34-75.25%, and finally, by using Power Spectral Density their classification performance was between 57.36% and83.42% Furthermore, classifier performances using Naive Bayes varied between 52.23% and 79.15% for Naive Bayes, 56.32-83.42%for Extreme Learning Machine, and 43.34-72.27% for Support Vector Machines by regarding classification algorithms. Amongachieved accuracy performances, the best accuracy is 83.42%, achieved by the Power Spectral Density features and Extreme LearningMachine algorithm pair.

| Alanya Alaaddin Keykubat Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Alanya Alaaddin Keykubat Üniversitesi, Alanya, Antalya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim