Yazar "Tanyer, S. Gokhun" seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Radarla Çoklu Hedef Tespiti için Nesne Tanıma Modellerinin Uyarlanması(Alanya Alaaddin Keykubat University, 2024) Hallaç, İbrahim Rıza; Akbaba, Deniz; Gökce, Gökhan; Tanyer, S. Gokhun; Driessen, Peter F.Bu makale, çoklu giriş çoklu çıkış (MIMO) radar hedef tespitinde için Derin Öğrenme tekniğinin uygulamasını, özellikle azimut ve yükseklik tahminine odaklanarak ele almaktadır. Geleneksel yöntemler, özellikle çoklu hedef senaryolarında parazit ve yansıma gibi zorluklarla karşı karşıya kalmaktadır. Özellik çıkarımı, genellikle menzil korelasyonu, Doppler filtreleme, açı demetleme ve sabit yanlış alarm oranı (CFAR) işleminden sonra tespit adımlarını içeren klasik radar sinyal işleme hattına dayanmaktadır. Ancak, erken aşamada veri seyreltilmesi, pratik uygulamalar için gereken büyük veri küplerinde bilgi kaybına yol açabilmektedir. Derin Öğrenme teknikleri, azimut ve yükseklik tespiti için alternatif bir yaklaşım sunmaktadır. Geliştirdiğimiz konvolüsyonel sinir ağı (CNN) modeli, 5000 örnekten oluşan tek hedefli veri üzerinde azimut için 0.149 ve yükseklik için 0.168 Ortalama Kare Hata (MSE) değerleri ile yüksek performans göstermiştir. İki hedefli senaryolarda ise model, 72.000 örneklik veri setinden 8000 test örneği üzerinde 0.838 ile 1.845 arasında MSE değerleri elde etmiştir. Bu makale, model geliştirme sürecini, radar hedef tespitindeki etkisini ve Derin Öğrenme ile geleneksel yöntemlerin entegrasyonuna yönelik potansiyel gelecek araştırma yönlerini detaylı bir şekilde ele almaktadır.












