Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ozturk, Yavuz" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Latency and power optimization in terahertz UAV-assisted vehicular networks across diverse atmospheric profile conditions
    (Springer, 2025) Korpe, Enis; Akkas, Mustafa Alper; Ozturk, Yavuz
    Terahertz (THz) communication has emerged as a key technology for high-speed wireless networks, particularly in scenarios where conventional frequency bands fail to meet growing data demands. With its potential for ultra-low latency, broad bandwidth, and robust connectivity, THz communication offers a suitable infrastructure for intelligent transportation systems and autonomous vehicles, especially within Vehicle-to-Everything (V2X) and Unmanned Aerial Vehicle (UAV) communication networks. This study aims to optimize THz communication between UAVs and ground vehicles under varying atmospheric conditions. Specifically, an artificial intelligence (AI)-based scheme is proposed to simultaneously minimize latency and transmission power while maintaining a sufficient signal-to-noise ratio (SNR) for successful communication. The proposed method integrates a dual-objective Particle Swarm Optimization (PSO) algorithm with the Line-by-Line Radiative Transfer Model (LBLRTM), which accurately models atmospheric absorption characteristics. Designed for critical scenarios such as emergency response operations, the scheme dynamically determines UAV positions and transmission powers to ensure both energy efficiency and low-latency communication. Simulation results demonstrate that the proposed approach achieves sufficient SNR levels and low latency across all atmospheric models. These findings highlight the potential of the AI-based approach to enhance energy efficiency and ensure sustainable connectivity in THz-enabled networks for time-sensitive applications.
  • [ X ]
    Öğe
    Swarm intelligence-inspired localization and power control for terahertz (THz) UAV-vehicle networks
    (Elsevier, 2025) Korpe, Enis; Akkas, Mustafa Alper; Ozturk, Yavuz
    In recent years, terahertz (THz) communication has gained significant attention as a transformative technology for high-speed wireless networks, addressing the limitations of conventional frequency bands in meeting the escalating demand for data transmission. THz communication is particularly critical in vehicle-to-everything (V2X) and unmanned aerial vehicle (UAV)-based communication networks, where ultra-low latency, high bandwidth, and reliable connectivity are essential. Operating in the frequency spectrum between the microwave and infrared bands, THz communication offers the potential for multi-gigabit data transmission rates, rendering it a promising enabler for next-generation intelligent transportation systems, autonomous vehicles, and UAV-supported applications. Furthermore, artificial intelligence (AI) emerges as a pivotal tool to enhance the reliability and efficiency of THz-based V2X and UAV communication networks by enabling the prediction of network traffic patterns and mobility dynamics. This study introduces a swarm intelligence-based AI approach designed to optimize system performance by minimizing latency and transmission power requirements while ensuring the required signal-to-noise ratio (SNR) within a UAV-assisted vehicular network operating in the THz band. The proposed methodology employs a dual-objective optimization framework that balances latency and transmission power within a predefined communication time frame. Comparative analysis is conducted between a baseline network with randomly distributed UAVs and a network employing UAV deployment guided by the proposed AI scheme. Also, the performance of proposed method is compared with existing swarm intelligence algorithms. Performance metrics, including SNR and latency, are evaluated to assess the system's efficacy. The channel modeling process leverages the Line-by-Line Radiative Transfer Model (LBLRTM) to characterize the propagation environment in the UAV-assisted vehicular network.

| Alanya Alaaddin Keykubat Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Alanya Alaaddin Keykubat Üniversitesi, Alanya, Antalya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim