Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Natesan, Srinivasan" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Error estimates for a fully discrete epsilon-uniform finite element method on quasi uniform meshes
    (2021) Şendur, Ali; Natesan, Srinivasan; Singh, Gautam
    In this article, we analyze a fully discrete epsilon-uniformly convergent finite element method for singularly perturbed convection-diffusion-reaction boundary-value problems, on piecewise-uniform meshes. Here, we choose L-splines as basis functions. We will concentrate on the convergence analysis of the finite element method which employ the discrete L-spline basis functions instead of their continuous counterparts. The L-splines are approximated on the piecewise-uniform Shishkin mesh inside each element. These approximations are used as basis functions in the frame of Galerkin FEM on a coarse piecewise-uniform mesh to discretize the domain. Further, we determine the amount of error introduced by the discrete L-spline basis functions in the overall numerical method, and explore the possibility of recovering the order of convergence that are consistent with the classical order of convergence for the numerical methods using the exact L-splines.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Error estimates for a fully discrete varepsilon?uniform finite element methodon quasi uniform meshes
    (2021) Şendur, Ali; Natesan, Srinivasan; Singh, Gautam
    In this article, we analyze a fully discrete varepsilon?uniformly convergent finite element method for singularly perturbed convection-diffusion-reaction boundary-value problems, on piecewise-uniform meshes. Here, we choose L?splines as basis functions.We will concentrate on the convergence analysis of thefinite element methodwhich employ the discreteL?spline basis functions instead of their continuous counterparts.The L?splines are approximated on the piecewise-uniform Shishkin mesh inside each element. These approximations are used as basis functions in the frame of Galerkin FEM on a coarse piecewise-uniform meshto discretize the domain. Further, we determinethe amount of error introduced by the discrete L?spline basis functions in the overall numerical method, and explore the possibility of recovering the order of convergence that are consistent with the classical order of convergence for the numerical methods usingthe exact L?splines.

| Alanya Alaaddin Keykubat Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Alanya Alaaddin Keykubat Üniversitesi, Alanya, Antalya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim