Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Milovanovic, Gradimir, V" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Analysis of Generating Functions for Special Words and Numbers and Algorithms for Computation
    (Springer Basel Ag, 2022) Kucukoglu, Irem; Milovanovic, Gradimir, V; Simsek, Yilmaz
    Our aim is to construct and compute efficient generating functions enumerating the k-ary Lyndon words having prime number length which arise in many branches of mathematics and computer science. We prove that these generating functions coincide with the Apostol-Bernoulli numbers and their interpolation functions and obtain other forms of these generating functions including not only the Frobenius-Euler numbers, but also the Fubini type numbers. Moreover, we derive some identities, relations and combinatorial sums including the numbers of the k-ary Lyndon words, the Bernoulli numbers and polynomials, the Stirling numbers and falling factorials. Using these generating functions and recurrence relation for the Apostol-Bernoulli numbers, we give two algorithms to compute these generating functions. Using these algorithms, we compute some infinite series formulas including the number of the k-ary Lyndon words on some special classes of primes with the purpose of providing some numerical evaluations about these generating functions. In addition, we approximate these generating functions by the rational functions of the Apostol-Bernoulli numbers to show that the complexity of the aforementioned algorithms may be decreased by means of approximation method which are illustrated by some numerical evaluations with their plots for varying prime numbers. Finally, using Bell polynomials (i.e., exponential functions) approach to the numbers of Lyndon words, we construct the exponential generating functions for the numbers of Lyndon words. Finally, we define a new family of special numbers related to these special words and investigate some of their fundamental properties.

| Alanya Alaaddin Keykubat Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Alanya Alaaddin Keykubat Üniversitesi, Alanya, Antalya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim