Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Kurt, Rifat" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Box-Behnken experimental design for optimization of chitosan foam materials reinforced with cellulose and zeolite
    (Wiley, 2024) Kurt, Rifat; Ergun, Halime; Ergun, Mehmet Emin; Istek, Abdullah
    Foam materials produced from biopolymers stand out as a more environmentally friendly insulation material solution. This study presents a comprehensive investigation into the development and optimization of chitosan-based foam materials using a Box-Behnken design. The foams were engineered using varying proportions of chitosan (0.5-3%), cellulose (0.5-3%), and zeolite (0.5-3%), targeting their application as thermal insulators. The physical and thermal properties of the foams that were produced were affected by the type and ratios of components, with density and thermal conductivity ranging from 0.0853 to 0.1915 g cm-3 and 0.0324 to 0.0921 W mK-1, respectively. Higher chitosan content improved insulation properties and mechanical strength whereas zeolite increments increased density and thermal conductivity. Using statistical analysis through the Box-Behnken design, we optimized the foam formulations, achieving minimum thermal conductivity and maximum compression strength at an averaged density, suggesting a strong potential for environmental sustainability applications. The recommended optimal chitosan:cellulose:zeolite composition ratio of 3:3:0.88 provides a valuable insight for tailored foam material formulation. This study shows the relationships between the composition of a composite material and its resultant properties, optimizing its preparation for industrial applicability in an environmentally conscious way within the context of insulation and construction. This investigation contributes to the field of material science by highlighting the versatility and potential of biopolymers but also aligns with the increasing need for green building materials.
  • [ X ]
    Öğe
    Optimized Eco-Friendly Foam Materials: A Study on the Effects of Sodium Alginate, Cellulose, and Activated Carbon
    (Mdpi, 2024) Ergun, Mehmet Emin; Kurt, Rifat; Can, Ahmet; Ozlusoylu, Ismail; Kalyoncu, Evren Ersoy
    This study focuses on optimizing the physical and mechanical properties of foam materials produced with the addition of sodium alginate as the matrix, and cellulose and activated carbon as fillers. Foam materials, valued for their lightweight and insulation properties, are typically produced from synthetic polymers that pose environmental risks. To mitigate these concerns, this study investigates the potential of natural, biodegradable polymers. Various foam formulations were tested to evaluate their density, compression modulus, and thermal conductivity. The results indicated that an increase in activated carbon content enhanced thermal stability, as indicated by higher Ti% and Tmax% values. Additionally, a higher concentration of sodium alginate and activated carbon resulted in higher foam density and compressive modulus, while cellulose exhibited a more intricate role in the material's behavior. In the optimal formula, where the sum of the component percentages totals 7.6%, the percentages (e.g., 0.5% sodium alginate, 5% cellulose, and 2.1% activated carbon) are calculated based on the weight/volume (w/v) ratio of each component in the water used to prepare the foam mixture. These results indicate that natural and biodegradable polymers can be used to develop high-performance, eco-friendly foam materials.

| Alanya Alaaddin Keykubat Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Alanya Alaaddin Keykubat Üniversitesi, Alanya, Antalya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim