Yazar "Akcay, Guven" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Transcranial direct current stimulation alleviates nociceptive behavior in male rats with neuropathic pain by regulating oxidative stress and reducing neuroinflammation(Wiley, 2023) Akcay, Guven; Samur, Dilara Nemutlu; Derin, NarinTranscranial direct curent stimulation (tDCS) and trans--spinal direct current stimulation (tsDCS) are promising therapies for pain that can alter the excitability of neuronal activity in cerebral cortex. The aim of the study is to investigate the therapeutic effects of direct current stimulation (DCS) over the spinal cord and cerebral cortex on oxidative stress and neuroinflammation in rats with chronic constriction injury (CCI). Male Wistar rats were randomly divided into four experimental groups: Sham, CCI, CCI + tDCS and CCI + tsDCS. The neuropathic pain model was induced by using the CCI model. Rats with neuropathy were treated with cathodal tDCS and tsDCS stimulations consisting of 0.5 mA for 30 min a day for 7 days from day 8 onwards. Locomotor activity was measured by open--field test and nociceptive behavior was assessed by hot--plate, tail--flick and Randall--Selitto tests. Following the behavioral experiments, total oxidant capacity ( TOC), total antioxidant capacity (TAC) and proinflammatory cytokine levels were evaluated in spinal cord and cerebral cortex tissues. The CCI model induced significant mechanical and thermal hyperalgesia. Nociceptive behaviors in rats with CCI were reversed by DCS treatment. Higher TOC and lower TAC levels were detected in the spinal cord and cerebral cortex tissues of the CCI rats compared to the control. tsDCS treatment amended oxidant/antioxidant status. Moreover, tsDCS modulated the central levels of Tumor necrosis factor--a (TNF--a), interleukin 1--beta (IL--1 ss), IL- -6 and IL--18. tsDCS stimulation showed better therapeutic effect on neuropathic pain by regulating oxidant/antioxidant levels and reducing neuroinflammation. DCS, especially at spinal level, may be a promising therapeutic strategy that can be used alone or in combination with other effective treatments for alleviating neuropathic pain.Öğe Vortioxetine ameliorates motor and cognitive impairments in the rotenone-induced Parkinson's disease via targeting TLR-2 mediated neuroinflammation(Pergamon-Elsevier Science Ltd, 2022) Samur, Dilara Nemutlu; Akcay, Guven; Yildirim, Sendegul; Ozkan, Ayse; Ceker, Tugce; Derin, Narin; Tanriover, GamzeParkinson's disease (PD) is characterized by motor and non-motor symptoms associated with dopaminergic and non-dopaminergic injury. Vortioxetine is a multimodal serotonergic antidepressant with potential procognitive effects. This study aimed to explore the effects of vortioxetine on motor functions, spatial learning and memory, and depression-like behavior in the rotenone-induced rat model of PD. Male Sprague-Dawley rats were daily administered with the rotenone (2 mg kg(-1), s.c.) and/or vortioxetine (10 mg kg(-1), s.c.) for 28 days. Motor functions (rotarod, catalepsy, open-field), depression-like behaviors (sucrose preference test), anxiety (elevated plus maze), and spatial learning and memory abilities (novel object recognition and Morris water maze) were evaluated in behavioral tests. Then immunohistochemical, neurochemical, and biochemical analysis on specific brain areas were performed. Vortioxetine treatment markedly reduced rotenone-induced neurodegeneration, improved motor and cognitive dysfunction, decreased depression-like behaviors without affecting anxiety-like parameters. Vortioxetine also restored the impaired inflammatory response and affected neurotransmitter levels in brain tissues. Interestingly, vortioxetine was thought to trigger a sort of dysfunction in basal ganglia as evidenced by increased Toll-like receptor-2 (TLR-2) and decreased TH immunoreactivity only in substantia nigra tissue of PD rats compared to the control group. The present study indicates that vortioxetine has beneficial effects on motor dysfunction as well as cognitive impairment associated with neurodegeneration in the rotenone-induced PD model. Possible mechanisms underlying these beneficial effects cover TLR-2 inhibition and neuro -chemical restoration of vortioxetine.












