Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Çapanoğlu, Esra" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Effect of food processing on antioxidants, their bioavailability and potential relevance to human health
    (2022) Toydemir, Gamze; Şubaşı, Büşra Gültekin; Hall, Robert D.; Beekwilder, Jules; Boyacıoğlu, Dilek; Çapanoğlu, Esra
    It has long been recognized that the antioxidants present in fresh plant materials may be very different to those we ingest via our foods. This is often due to the use of food processing strategies involving thermal/non-thermal treatments. Current research mostly focuses on determining what is present in vegetative starting materials; how this is altered during processing; how this influences activity in the gut and following uptake into bloodstream; and which in vivo physiological effects this may have on human body. Having a better understanding of these different steps and their importance in a health-and-nutrition-context will place us in a better position to breed for improved crop varieties and to advise the food industry on how to optimize processing strategies to enhance biochemical composition of processed foods. This review provides an overview of what is currently known about the influence which food processing treatments can have on antioxidants and gives some pointers as to their potential relevance.
  • [ X ]
    Öğe
    Investigating the antioxidant and antimicrobial activities of different vinegars
    (Springer, 2017) Bakır, Sena; Devecioğlu, Dilara; Kayacan, Selma; Toydemir, Gamze; Karbancıoğlu Güler, Funda; Çapanoğlu, Esra
    In this study, the antioxidant contents and the antimicrobial activities of 18 vinegar samples were investigated. For this purpose, total flavonoid contents (TFC) and total phenolic contents (TPC) of different vinegar samples were determined. In addition, total antioxidant capacities (TAC) of vinegars were analyzed using four different in vitro tests: ABTS, CUPRAC, DPPH, and FRAP, in parallel. Results obtained from antioxidant analyses showed that balsamic vinegar had the highest TFC (96 +/- 18 mg CE/100 mL) and TPC values (255 +/- 24 mg GAE/100 mL), as well as the highest TAC determined using CUPRAC (709 +/- 108 mg Trolox/100 mL) and FRAP (421 +/- 28 mg Trolox/100 mL) methods. The phenolic profiles of vinegar samples were identified by performing HPLC analysis. Among all vinegar samples studied, the most abundant phenolic compounds were determined to be gallic acid, protocatechuic acid, and p-hydroxybenzoic acid. Furthermore, antimicrobial activities of different vinegars, against Staphylococcus aureus, Salmonella Typhimurium, and Escherichia coli, were evaluated using disc diffusion method; the results of which were related to the acetic acid contents and the pH values of the vinegar samples. Balsamic vinegar was again determined to be the sample that had the highest antimicrobial activity, which showed a strong antibacterial activity against S. Typhimurium. Antibacterial activities of vinegars could partly be related to both their acetic acid contents and the pH values, and also to their phenolic contents.
  • [ X ]
    Öğe
    Nanosensors for foods
    (Springer, 2020) Toydemir, Gamze; Çekiç, Sema Demirci; Özkan, Gülay; Uzunboy, Seda; Avan, Aslı Neslihan; Çapanoğlu, Esra; Apak, Reşat
    Nanotechnology, as being a branch of science taking the advantage of the unique chemical and physical properties of matter on the nanoscale, has a great potential of application in food systems, including the development of effective and innovative analytical techniques for monitoring food safety and quality. At this point, nanosensors and nanobiosensors take the first place as promising alternatives to the classical quantification methods used for ensuring safety and quality of foodstuffs. The electrochemical nanosensors, optical nanosensors, nanoparticle-based nanosensors, nano-tube based nanosensors, quantum dots, nanofibers, electronic nose and electronic tongue, and nanobarcode technology have greatly added to the food detection practices in food systems with their superior sensing capabilities. Current research report many applications of these important tools to improve the quality and safety of food products, including nanosensors to detect chemical (i.e. pesticides, antibiotics, heavy metals) and biological (toxins and pathogens) contaminants, as well as adulterants (i.e. melamine); to improve in-package protection of foods through enhanced thermal and mechanical properties; to monitor freshness and traceability in raw and processed products; and to control the use of food additives (i.e. aroma and coloring agents). The present chapter is focused on the recent progress in nanotechnology-enabled biosensing through the introduction of current research on various types of nanosensors followed by their applications in food safety. © Springer Nature Switzerland AG 2020.
  • [ X ]
    Öğe
    Prunus fruit juices
    (John Wiley & Sons Ltd, 2017) Toydemir, Gamze; Boyacıoğlu, Dilek; Hall, Robert D.; Beekwilder, Jules; Çapanoğlu, Esra
    [No abstract available]

| Alanya Alaaddin Keykubat Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Alanya Alaaddin Keykubat Üniversitesi, Alanya, Antalya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim