Comparison of three different solar collectors integrated with geothermal source for electricity and hydrogen production
Abstract
In this study, an integrated system is proposed for mainly electricity and hydrogen production. Energy and exergy analyses of the system are also examined by using Engineering Equation Solver (EES, version 2019) under solar radiation during day time on 1st July. The proposed system consists of a middle-temperature geothermal source with fluid temperature 93 degrees C, three solar collectors (SCs of 300 m(2)) namely parabolic trough solar collectors (PTSCs), evacuated tube solar collectors (ETSCs), flat plate solar collectors (FPSCs), an organic Rankine cycle (ORC), proton exchange membrane (PEM), a compressor, hot water storage tank and a mushroom cultivation room. The temperature of the geothermal fluid is upgraded via solar collectors by harvesting solar radiation to operate the ORC. Thus the generated electricity is used in the PEM electrolysis system for producing hydrogen. When the PTSCs, ETSCs, and FPSCs are integrated with the geothermal source separately, it is found that 2758.69 g, 1585.27 g, and 634.42 g of hydrogen can be produced, respectively for a day. The highest overall energetic and exergetic performance of the system is calculated as to be 5.67% and 7.49%, respectively. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.