Basit öğe kaydını göster

dc.contributor.authorBaşaran, Murat Alper
dc.contributor.authorSimonetti, Biagio
dc.contributor.authorD'Ambra, Luigi
dc.date.accessioned2021-02-19T21:16:38Z
dc.date.available2021-02-19T21:16:38Z
dc.date.issued2016
dc.identifier.isbn978-3-319-39014-7; 978-3-319-39012-3
dc.identifier.issn1434-9922
dc.identifier.urihttps://doi.org/10.1007/978-3-319-39014-7_12
dc.identifier.urihttps://hdl.handle.net/20.500.12868/503
dc.descriptionBasaran, Murat Alper/0000-0001-9887-5531en_US
dc.descriptionWOS: 000389034800013en_US
dc.description.abstractIn this chapter, we will deal with fuzzy correlation and fuzzy non-linear regression analyses. Both correlation and regression analyses that are useful and widely employed statistical tools have been redefined in the framework of fuzzy set theory in order to comprehend relation and to model observations of variables collected as either qualitative or approximately known quantities which are no longer being utilized directly in classical sense. When fuzzy correlation and fuzzy non-linear regression are concern, dealing with several computational complexities emerging due to the nature of fuzzy set theory is a challenge. It should be noted that there is no well-established formula or method in order to calculate fuzzy correlation coefficient or to estimate parameters of the fuzzy regression model. Therefore, a rich literature will accompany with the readers. While extension principle based methods are utilized in the computational procedures for fuzzy correlation coefficient, the distance based methods preferred rather than mathematical programming ones are employed in parameter estimation of fuzzy regression models. That extension principle combined with either fuzzy arithmetic or non-linear programming is two different methods proposed in the literature will be examined with small but illustrative examples in detail for fuzzy correlation analysis. Fuzzy non-linear regression has been a relatively new studied method when compared to fuzzy linear regression. However, both employ similar tools. S-curve fuzzy regression and two types of quadratic fuzzy regression models in the literature will be discussed.en_US
dc.language.isoengen_US
dc.publisherSpringer Int Publishing Agen_US
dc.relation.ispartofseriesStudies in Fuzziness and Soft Computing
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy correlation analysisen_US
dc.subjectFuzzy non-linear regression analysisen_US
dc.subjectS-curve regressionen_US
dc.subjectQuadratic regressionen_US
dc.titleFuzzy correlation and fuzzy non-linear regression analysisen_US
dc.typebookParten_US
dc.contributor.departmentALKÜen_US
dc.contributor.institutionauthor0-belirlenecek
dc.identifier.doi10.1007/978-3-319-39014-7_12
dc.identifier.volume343en_US
dc.identifier.startpage203en_US
dc.identifier.endpage220en_US
dc.relation.journalFuzzy Statistical Decision-Making: Theory And Applicationsen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster