Basit öğe kaydını göster

dc.contributor.authorArı, Yakup
dc.contributor.authorPapadopoulos, Alex
dc.date.accessioned2021-02-19T21:16:33Z
dc.date.available2021-02-19T21:16:33Z
dc.date.issued2019
dc.identifier.issn0424-267X
dc.identifier.issn1842-3264
dc.identifier.urihttps://doi.org/10.24818/18423264/53.1.19.05
dc.identifier.urihttps://hdl.handle.net/20.500.12868/474
dc.descriptionWOS: 000461762700005en_US
dc.description.abstractThe dependency of conditional second moments of financial time series is modelled by Generalized Autoregressive conditionally heteroscedastic (GARCH) processes. The maximum likelihood estimation (MLE) procedure is most commonly used for estimating the unknown parameters of a GARCH model. In this study, the parameters of the GARCH models with student-t innovations are discussed for estimations using the Bayesian approach. It is assumed that the parameters of the GARCH model are random variables having known prior probability density functions. Lindley's approximation will be used to estimate the Bayesian estimators since they are not in a closed form. The Bayesian estimators are derived under squared error loss function. Finally, a simulation study is performed in order to compare the ML estimates to the Bayesian ones and in addition to simulations an example is given in order to illustrate the findings. MLE's and Bayesian estimates are compared according to the expected risks in the simulation study which shows that as the sample size increases the expected risks decrease and also it is observed that Bayesian estimates have performed better than MLE 's.en_US
dc.language.isoengen_US
dc.publisherAcad Economic Studiesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGARCHen_US
dc.subjectMLEen_US
dc.subjectLindley's Approximationen_US
dc.subjectBayesian Methodsen_US
dc.subjectSquared Erroren_US
dc.titleBayesian estimation of student-t garch model using lindley's approximationen_US
dc.typearticleen_US
dc.contributor.departmentALKÜen_US
dc.contributor.institutionauthor0-belirlenecek
dc.identifier.doi10.24818/18423264/53.1.19.05
dc.identifier.volume53en_US
dc.identifier.issue1en_US
dc.identifier.startpage75en_US
dc.identifier.endpage88en_US
dc.relation.journalEconomic Computation And Economic Cybernetics Studies And Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster