Basit öğe kaydını göster

dc.contributor.authorErdaş Çicek, Özlem
dc.contributor.authorAtaç, Ali Osman
dc.contributor.authorGürkan Alp, A. Selen
dc.contributor.authorBüyükbingol, Erdem
dc.contributor.authorAlpaslan, Ferda Nur
dc.date.accessioned2021-02-19T21:16:09Z
dc.date.available2021-02-19T21:16:09Z
dc.date.issued2019
dc.identifier.issn1549-9596
dc.identifier.issn1549-960X
dc.identifier.urihttps://doi.org/10.1021/acs.jcim.9b00206
dc.identifier.urihttps://hdl.handle.net/20.500.12868/273
dc.descriptionAlpaslan, Ferda Nur/0000-0002-9806-1543; Erdas Cicek, Ozlem/0000-0003-4019-7744en_US
dc.descriptionWOS: 000500038700016en_US
dc.descriptionPubMed: 31596082en_US
dc.description.abstractUnderstanding the interaction between drug molecules and proteins is one of the main challenges in drug design. Several tools have been developed recently to decrease the complexity of the process. Artificial intelligence and machine learning methods offer promising results in predicting the binding affinities. It becomes possible to do accurate predictions by using the known protein-ligand interactions. In this study, the electrostatic potential values extracted from 3-dimensional grid cubes of the drug-protein binding sites are used for predicting binding affinities of related complexes. A new algorithm with a dynamic feature selection method was implemented, which is derived from Compressed Images For Affinity Prediction (CIFAP) study, to predict binding affinities of Checkpoint Kinase 1 and Caspase 3 inhibitors.en_US
dc.language.isoengen_US
dc.publisherAmer Chemical Socen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleThree-dimensional analysis of binding sites for predicting binding affinities in drug designen_US
dc.typearticleen_US
dc.contributor.departmentALKÜen_US
dc.contributor.institutionauthor0-belirlenecek
dc.identifier.doi10.1021/acs.jcim.9b00206
dc.identifier.volume59en_US
dc.identifier.issue11en_US
dc.identifier.startpage4654en_US
dc.identifier.endpage4662en_US
dc.relation.journalJournal of Chemical Information And Modelingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster