Basit öğe kaydını göster

dc.contributor.authorİncetaş, Mürsel Ozan
dc.contributor.authorArslan, Rukiye Uzun
dc.date.accessioned2021-02-19T21:28:44Z
dc.date.available2021-02-19T21:28:44Z
dc.date.issued2019
dc.identifier.issn1300-7688
dc.identifier.issn1308-6529
dc.identifier.urihttps://doi.org/10.19113/sdufenbed.570597
dc.identifier.urihttps://app.trdizin.gov.tr/makale/TXpZNE16UTRPQT09
dc.identifier.urihttps://hdl.handle.net/20.500.12868/776
dc.description.abstractEdge detection is one of the most basic stages of image processing and have been used in many areas. Its purpose is to determine the pixels formed the objects. Many researchers have aimed to determine objects' edges correctly, like as they are determined by the human eye. In this study, a new edge detection technique based on spiking neural network is proposed. The proposed model has a different receptor structure than the ones found in literature and also does not use gray level values of the pixels in the receptive field directly. Instead, it takes the gray level differences between the pixel in the center of the receptive field and others as input. The model is tested by using BSDS train dataset. Besides, the obtained results are compared with the results calculated by Canny edge detection method.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleEdge detection using integrate and fire neuron modelen_US
dc.typearticleen_US
dc.contributor.departmentALKÜen_US
dc.contributor.institutionauthor0-belirlenecek
dc.identifier.doi10.19113/sdufenbed.570597
dc.identifier.volume23en_US
dc.identifier.issue2en_US
dc.identifier.startpage611en_US
dc.identifier.endpage616en_US
dc.relation.journalSüleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisien_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster