dc.contributor.author | Kargın, Levent | |
dc.contributor.author | Corcino, Roberto B. | |
dc.date.accessioned | 2021-02-19T21:16:14Z | |
dc.date.available | 2021-02-19T21:16:14Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1065-2469 | |
dc.identifier.issn | 1476-8291 | |
dc.identifier.uri | https://doi.org/10.1080/10652469.2016.1174701 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12868/329 | |
dc.description | Corcino, Roberto/0000-0003-1681-1804 | en_US |
dc.description | WOS: 000377034600003 | en_US |
dc.description.abstract | In this paper we define generalized exponential polynomials by means of the generalization of the Mellin derivative (xD). We give different proofs for some known results and obtain a new recurrence relation and a new operator formula for generalized exponential polynomials. We also define generalized geometric polynomials by means of the generalization of the Mellin derivative (xD) and obtain their basic properties. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Stirling numbers | en_US |
dc.subject | Bell numbers | en_US |
dc.subject | exponential numbers and polynomials | en_US |
dc.subject | geometricnumbers and polynomials | en_US |
dc.title | Generalization of Mellin derivative and its applications | en_US |
dc.type | article | en_US |
dc.contributor.department | ALKÜ | en_US |
dc.contributor.institutionauthor | 0-belirlenecek | |
dc.identifier.doi | 10.1080/10652469.2016.1174701 | |
dc.identifier.volume | 27 | en_US |
dc.identifier.issue | 8 | en_US |
dc.identifier.startpage | 620 | en_US |
dc.identifier.endpage | 631 | en_US |
dc.relation.journal | Integral Transforms And Special Functions | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |