Basit öğe kaydını göster

dc.contributor.authorSayıner, Hakan Sezgin
dc.contributor.authorAbdalrahm, Afaf A. S.
dc.contributor.authorBaşaran, Murat A.
dc.contributor.authorKovalishyn, Vasyl
dc.contributor.authorKandemirli, Fatma
dc.date.accessioned2021-02-19T21:16:07Z
dc.date.available2021-02-19T21:16:07Z
dc.date.issued2018
dc.identifier.issn1573-4064
dc.identifier.issn1875-6638
dc.identifier.urihttps://doi.org/10.2174/1573406413666171002124408
dc.identifier.urihttps://hdl.handle.net/20.500.12868/248
dc.descriptionsayiner, hakan sezgin/0000-0002-4693-3784; Kovalishyn, Vasyl/0000-0002-9352-7332; Basaran, Murat Alper/0000-0001-9887-5531en_US
dc.descriptionWOS: 000429554400006en_US
dc.descriptionPubMed: 28969576en_US
dc.description.abstractBackground: Acinetobacter is a Gram-negative, catalase-positive, oxidase-negative, non-motile, and no fermenting bacteria. Objective: In this study, some of the electronic and molecular properties, such as the highest occupied molecular orbital energy (E-HOMO), lowest unoccupied molecular orbital energy (ELUMO), the energy gap between E-HOMO and E-LUMO, Mulliken atomic charges, bond lengths, of molecules having impact on antibacterial activity against A. baumannii were studied. In addition, calculations of some QSAR descriptors such as global hardness, softness, electronegativity, chemical potential, global electrophilicity, nucleofugality, electrofugality were performed. Method: The descriptors having impact on antibacterial activity against A. baumannii have been investigated based on the usage of 29 compounds employing two statistical methods called Linear Regression and Artificial Neural Networks. Results: Artificial Neural Networks obtained accuracies in the range of 83-100% (for active/inactive classifications) and q(2)=0.63 for regression. Conclusion: Three ANN models were built using various types of descriptors with publicly available structurally diverse data set. QSAR methodologies used Artificial Neural Networks. The predictive ability of the models was tested with cross-validation procedure, giving a q(2)=0.62 for regression model and overall accuracy 70-95 % for classification models.en_US
dc.language.isoengen_US
dc.publisherBentham Science Publ Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectA. baumanniien_US
dc.subjectQSARen_US
dc.subjectartificial neural networksen_US
dc.subjectDFTen_US
dc.subjectdragonen_US
dc.subjectgram-negative bacteriaen_US
dc.subjectE. colien_US
dc.titleThe quantum chemical and QSAR studies on acinetobacter baumannii oxphos inhibitorsen_US
dc.typearticleen_US
dc.contributor.departmentALKÜen_US
dc.contributor.institutionauthor0-belirlenecek
dc.identifier.doi10.2174/1573406413666171002124408
dc.identifier.volume14en_US
dc.identifier.issue3en_US
dc.identifier.startpage253en_US
dc.identifier.endpage268en_US
dc.relation.journalMedicinal Chemistryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster